
Consistency by construction:
the case of MERODE

Monique Snoeck, Cindy Michiels, Guido Dedene

Department of Applied Economic Sciences, Katholieke Universteit Leuven,
Naamsestraat 69, 3000 Leuven, Belgium

monique.snoeck, cindy.michiels, guido.dedene@econ.kuleuven.ac.be

Abstract. Modeling languages such as UML offer a set of basic models to de-
scribe a software system from different views and at different levels of abstraction.
Tools supporting an unrestricted usage of these UML models cannot guarantee the
consistency between multiple models/views, due to the lack of a formal definition
of the semantics of UML diagrams. A better alternative that does allow for auto-
matic consistency checking is modeling according to the single model principle.
This approach is based on the conception of a single model, for which different
views are constructed, and with an automatic or semi-automatic generation or con-
sistency checking among these views. Three basic approaches to consistency
checking are consistency by analysis, consistency by monitoring and consistency
by construction. In this paper we illustrate the consistency by construction approach
by means of the conceptual domain modeling approach MERODE and its associ-
ated case-tool MERMAID. We also illustrate how consistency by construction im-
proves the validity and completeness of the conceptual model.

1. The single model principle
The framework of Lindland, Sindre and Solvberg for quality-improvement of con-

ceptual models distinguishes itself from previous attempts by not only identifying
major quality goals for conceptual models, but also the means for achieving them [1].
As such, the framework contains a core set of quality goals and means, subdivided
according to syntactic, semantic and pragmatic quality. With respect to semantic
quality, two goals are put forward, i.e. feasible validity and feasible completeness.
Validity means that all statements made by the model are correct and relevant to the
problem, whereas completeness means that the model contains all the statements
about the domain that are correct and relevant. To achieve a feasible level of validity,
consistency checking is considered as an important semantic means: it allows verify-
ing the internal correctness of specifications1. In order to do automatic consistency
checking, the model must be captured in a formal language.

Modeling languages such as UML offer a set of basic models to describe a soft-
ware system from different views and at different levels of abstraction [2]. Examples
of models included in UML are Use Cases for the functional requirements, class dia-
grams for the static view, interaction diagrams for the dynamic view, etc. Tools sup-

1 As opposed to external correctness, meaning that a specification should meet the user requi-

rements.

porting an unrestricted usage of these UML models, cannot guarantee the consistency
between multiple models/views of the same system if these are constructed independ-
ently. The reason why automatic consistency checking cannot be supported is that
UML lacks formal rules to enforce a consistent mapping between the models it de-
fines. A better alternative that does allow for automatic consistency checking is mod-
eling according to the single model principle [3]. This approach is based on the
conception of a single model, for which different views are constructed, and with an
automatic or semi-automatic generation or consistency checking among these views2.

For the verification of view consistency three basic approaches can be distin-
guished. A first approach is consistency by analysis, meaning that an algorithm is
used to detect all inconsistencies between two deliverables, and a report is generated
thereafter for the developers. In this kind of approach the requirements engineer can
freely construct the different views. At the end of the specification process or at regu-
lar intervals, the algorithm is run against the models to spot errors and/or incomplete-
ness in the various views. The verification can be done manually, but obviously
building the algorithm into a case-tool will substantially facilitate the consistency
checking procedure.

The second approach can be denoted as consistency by monitoring, meaning that a
tool has a monitoring facility that checks every new specification against the already
existing specifications in the case-tool's repository. Whenever an attempt is made to
enter a specification that is inconsistent with some previously entered specification,
the new specification is rejected. The advantage of this approach is that the model is
constantly consistent. Whereas the first approach puts the burden of correcting incon-
sistencies on the requirement engineer, the second approach avoids the input of incon-
sistencies. At the end of the specification process, the model must still be verified for
completeness. The possible disadvantage of this approach is that a too stringent veri-
fication procedure will turn the input of specifications into a frustrating activity. The
two approaches can be compared to two spelling and grammar checking strategies in
word processing: the first checks spelling and grammar by running the spelling and
grammar checker periodically, whereas the second approach is the equivalent of the
option "check spelling and grammar as you type".

A third approach is consistency by construction, meaning that a tool generates one
deliverable from another and guarantees semantic consistency. Whenever specifica-
tions are defined in one view, those elements in other views that can automatically be
inferred are included in those views. Also in this approach, the requirements engineer
can only define consistent models. The major advantage is however that the specifi-
cations are more or less constructed in an automated way: everything that can auto-
matically be inferred is generated by the case-tool. This saves a lot of input effort. In
addition, whereas the monitoring approach leads to a case-tool that generates error
messages at every attempt to enter inconsistent specifications, the self-constructing
approach avoids the input of inconsistent specifications by completing the entered
specifications with their consistent consequences. The result is a much more user-
friendly environment. Moreover, the automated generation of specifications offers
the major advantage of improved completeness of the model.

In the remainder of the paper, we discuss the integration of the consistency by con-
struction approach in MERMAID, a modeling tool based on the object-oriented ana-
lysis method MERODE. This methodology offers three basic views on a business

2 Notice that in UML, each view is called a "model".

model –static, dynamic and interaction view– and is formalized in a set of rules man-
aging all mappings between these views. Since the aim of the paper is to illustrate the
modeling gains of a tool supporting the single model principle by consistency by con-
struction, we kindly ask the reader to take the methodology “as is”.

The paper is organized as follows. Section 2 introduces the three views that are
supported in MERODE. Section 3 then briefly presents the consistency checking
rules as they have been elaborated in [4][5] and discusses consistency by construction
in MERMAID (due to space limitations, inheritance will not be discussed). Section 4
illustrates how consistency by construction improves the validity and completeness of
the conceptual model. Finally section 5 presents some conclusions.

2. Overview of the Static, Dynamic and Interaction View
MERODE stands for Model-driven Existence dependency Relation, Object-

oriented DEvelopment. It is a methodology for object-oriented enterprise modeling
that has grown out of research on semantic modeling approaches, Jackson Systems
Development [6] and object-oriented analysis.

The most distinguishing features of this methodology are its specific orientation to
domain modeling, the use of Existence Dependency to model the static aspects of the
domain model, and the event driven approach to behavior modeling. Relevant con-
cepts will be explained in subsequent sections. By means of an example will be illus-
trated how a specification can be self-completing to a certain extent and how this
automated consistency by construction contributes to the validity and completeness of
specifications. A MERODE model consists of three subviews:

- an existence dependency graph (EDG) that organizes enterprise object types
according to existence dependency and inheritance,

- an object-event table (OET), which identifies business event types and relates
those to the enterprise object types,

- a behavioral model, consisting of one finite state machine (FSM) per enterprise
object type.

The semantics of the EDG, the OET and the FSMs have been defined by means of

process algebra and view consistency has been defined at the same time [4][5]. As a
result, a set of consistency checking rules is available for this method, which also pro-
vide for some basic completeness check. Fig.1 gives an overview of the views and
the rules.

Existence
Dependency
Graph

Object Event
table

Finite State
Machine

Finite State
Machine

Finite State
Machine

Finite State
Machine

Alphabet Rule (bis)
Default life cycle rule

Alphabet Rule
Propagation rule
Type of Involvement rule
Detection of possible redundant paths

Fig. 1. Views and consistency checking rules in MERODE

2.1 The Existence Dependency Graph

Let us consider the UML class diagram in Fig. 2. It represents a situation where
customers can place zero to many orders for projects. Each project is ordered by ex-
actly one customer. Employees work on projects: each employee works on exactly
one project at a time and each project has zero to many employees working on it.

 EMPLOYEE CUSTOMER [1..1] [0..*] PROJECT

orders works for

[1..1] [0..*]

Fig. 2. Project management

Although the two associations look identical in their graphical representation, there
is some substantial difference in the semantics of each association. Indeed, every
employee works on one project at a time, but over time employees can work on sev-
eral projects consecutively. In other words, the association "works for" is modifiable.
The "orders" association however, is not modifiable: a project is ordered by one cus-
tomer, but this customer remains the same over time. Consequently the diagram in
Fig. 2 can be considered to be semantically incomplete: some relevant statements
about the domain have not been expressed. Therefore, in MERODE, it is required to
transform a class diagram into an existence dependency graph (EDG). In such graph,
all object types are only related through associations that express existence depend-
ency. According to the formal definitions in MERODE, a class D is existence de-
pendent of a class M if and only if the life of each occurrence of class D is embedded
in the life of one single and always the same occurrence of class M. D is called the
dependent class and is existence dependent of M, called the master class. A more
informal way of defining existence dependency is as follows: if each object of a class
D always refers to minimum one, maximum one and always the same occurrence of
class M, then D is existence dependent of M. Notice that existence dependency is
equivalent to the notion of weak entity as defined by Chen [7][4]. To avoid confusion
with a standard UML class diagram, MERODE uses a proprietary notation with dots
and arrows to define cardinality of the existence dependency relationship. This cardi-
nality defines how many occurrences of the dependent object type can be dependent
of one master object at one point in time. As the cardinality of the master class is al-
ways exactly one (every dependent is associated to exactly one master), only the car-
dinality for the dependent needs to be specified. An arrowhead means that the master
can have several dependents simultaneously whereas a straight line limits the maxi-
mum cardinality to one. A white dot means that having a dependent is optional for the
master, whereas a black dot imposes a minimum constraint of one (the master has at
least one dependent at any time).

The transformation of the class diagram of Fig. 2 results in the EDG of Fig. 3. The
"orders" association expresses existence dependency: each project can only exist
within the context of a customer and refers to exactly one and always the same cus-
tomer for the whole duration of its life. A customer on the contrary can exist on its
own. He needs not to have a project in order to exist (optionality indicated by the
white dot) and he can have many ongoing projects (arrowhead). The "works for"
relationship does not represent existence dependency. An employee can exist outside
of the context of a project and a project can exist outside of the context of an
employee. When an association does not express existence dependency, the associa-

When an association does not express existence dependency, the association is turned
into an object type that is existence dependent of all the object types participating in
the association. In this case this means that the "works for" association is turned into
an object type ASSIGNMENT, which is existence dependent of PROJECT and EMPLOYEE.
MERODE calls this type of intermediate class a "contract" class: it models what can
happen during the period of time that a project and an employee are related to each
other. Since a project can have zero to many employees, each project has zero to
many assignments (white dot, arrow). And as each employee is assigned to exactly
one project at a time, each employee has exactly one assignment at a time (black dot,
straight line).

EMPLOYEECUSTOMER PROJECT ASSIGNMENT

Fig. 3. Existence dependency graph for the project management example.

2.2. The Object-Event Table

In the case of object-oriented conceptual modeling, domain requirements will be
formulated in terms of business or enterprise object types, associations between these
object types and the behavior of business object types. The definition of desired ob-
ject behavior is an essential part in the specification process. On the one hand, we
have to consider the behavior of individual objects. This type of behavior will be
specified as methods and statecharts for object classes. On the other hand, objects
have to collaborate and interact. Typical techniques for modeling object interaction
aspects are interaction diagrams or sequence charts, and collaboration diagrams.

In most object-oriented approaches events are considered as subordinate to objects,
because they only serve as a trigger for an object’s method. The object interactions
themselves are modeled by means of sequence and/or collaboration diagrams.

In contrast, MERODE follows an event-driven approach that raises events to the
same level of importance as objects, and recognizes them as a fundamental part of the
structure of experience [8]. A business event is now defined as an atomic unit of ac-
tion that represents something that happens in the real world, such as the creation of a
new customer, an order placement, etc. The business events reflect how domain ob-
jects come into existence (the creating events), how domain objects are modified (the
modifying events), and how they disappear from the universe of discourse (the ending
events). Object interaction can now be modeled by defining which objects are con-
currently involved in which events. Object-event participations are denoted by means
of an object-event table (OET). When an object participates in an event, it imple-
ments a method that defines the effect of the event on the object. On occurrence of
the event all corresponding methods in the participating objects are executed in paral-
lel. Thus, instead of modeling a complex sequence of method invocations, it is now
assumed that all methods are concurrently executed. The OET for the project man-
agement example is given in Table 1. The rules that govern the construction of this
table are described in the next section.

2.3 The finite state machines

Finally, the life cycle of every enterprise object class is modeled by means of a fi-
nite state machine (FSM). The events of the object-event table are used as triggers for
the transitions in the finite state machine. As an example, Fig. 4 shows the FSM for
EMPLOYEE. Similarly, a FSM can be defined for the classes PROJECT, ASSIGNMENT
and CUSTOMER.

3. Consistency by constru

The construction of the OET is gove
sistency of the OET with the EDG. An
would verify the consistency after ente
trate how many of the consistency rules
the requirements, preventing in this way

3.1 Alphabet Rule

The alphabet of an object class is
marked for this object type in the OET.
have only one effect on objects of a cla
objects. In addition, the rule states tha
create occurrences and one event to des

Rather than verifying post factum w
ending event for each enterprise object
two business events when an object typ
the name of the object type preceded by
user can overwrite the names and decid
multaneously, the OET is completed a
type, two rows are added for the even
Fig 6.).

e
exists

assign

cr_employee end_employee

remove

assigned

mod_employee

Fig. 4. Finite state machine for Employe

Table 1. Object-event table for pro-
ject management.

 Cu
sto

me
r

Pr
oje

ct

Em
plo

ye
e

As
sig

nm
en

t

cr_customer C
mod_customer M
end_customer E
cr_project M C
mod_project M M
end_project M E
cr_employee C
mod_employee M
end_employee E
assign M M M C
remove M M M E

ction

rned by a number of rules that ensure the con-
 algorithmic approach to consistency checking
ring the specification. In this section we illus-
 allow to automatically generate some parts of
 inconsistencies and incompleteness.

defined as the set of all event types that are
 The Alphabet Rule states that each event can
ss: the event either creates, modifies or deletes
t each object class needs at least one event to
troy occurrences in this class.
hether there is at least one creating and one

type, the case-tool will automatically generate
e is added to the EDG. The default names are
 "cr_" and "end_", but as shown in Fig. 5, the
e not to generate one or both event types. Si-
ccordingly: a column is added for the object
t types and the participations are marked (see

Fig. 5. Existence dependency graph Fig. 6. Object-event table

3.2 Propagation Rule and Type of Involvement Rule

A second rule in the construction of the OET is the propagation rule. The propa-
gation rule states that when an object type D is existence dependent of an object type
M, the latter is by default also involved in all event types D is involved in. This means
that if an involvement is marked for an event type in the column of a dependent object
type D, it must also be marked in the column of the master object type M.

In addition, the type of involvement rule states that since an existence dependent
object type cannot start to exist before its master, a creating event type for a depend-
ent class is a creating or a modifying
event type for the master class. A
modifying event type for a dependent
class is also a modifying event type
for its master class. And finally,
since a dependent cannot outlive its
master, an ending event type for a
dependent is an ending or modifying
event type for its master. To discern
the participations the master acquired
from its dependents through the
propagation rule from the event type
participations that are proprietary to
the master class, the former are pre-
ceded by a 'A/' (from Acquired) and
the latter by an 'O/' (from Owned).

Performing and verifying the
propagation by hand is a time con-
suming task, especially for larger
projects. A case-tool however, can
easily generate all the propagated
participations. For the project man-

Fig. 7. OET with propagated object-event
participations

agement example, the resulting OET after entering the four object types and the exis-
tence dependency relations is shown in Fig. 7.

The OET can be modified independently from the EDG, but also in this case, con-
sistency is automatically enforced whenever possible. Adding an object type in the
OET will add the object type in the EDG as well, although it will not be related to
other object types already in the EDG.

Events can be added in the OET and for these events we can add owned methods,
which will be automatically propagated. Acquired methods cannot be added or re-
moved. The type of involvement can be modified, provided it follows the type of in-
volvement rule.

3.3 Detection of Possible Redundant Paths

Joining paths in the EDG occur when a master can be reached from a dependent by
following two different existence dependency paths transitively from dependent to
master. Assume that the project management example is extended with invoicing as
in Fig. 8. During his/her assignment to a project, each employee can register the
hours performed for the project. This time registration is included on an invoice at
the end of the month as an invoice line.

 CUSTOMER EMPLOYEE ASSIGN-

MENT
PROJECT

INVOICE
LINE

INVOICE TIME
REGISTRA-

TION
Fig. 8. Extended EDG for Project Management

Going along the existence dependency relations from dependent to master, the ob-

ject type CUSTOMER can be reached in two ways from the class INVOICE LINE:
INVOICE LINE � INVOICE � CUSTOMER
 and
INVOICE LINE� TIME REGISTERATION � ASSIGNMENT � PROJECT � CUSTOMER

Applying the propagation rule in the OET automatically identifies this kind of path

joins: path joins lead to multiple propagations in the OET. In the ordering example the
object type CUSTOMER will acquire the event types from invoice line two times, once
through each path (see Table 2). Identifying path joins is important since one must
answer the question whether one or two customers are involved in an invoice line. In
other words: is the customer for whom the work was done (that is to say, the customer
connected to the project connected to the invoice line via assignment and time-
registration) the same person as the one whom we send the invoice to? If this is the
case, the double participation is replaced by a single participation and a constraint (an
invariant) is added in the class INVOICE LINE:

self.INVOICE.CUSTOMER
= self.TIME_REGISTRATION.ASSIGNMENT.PROJECT.CUSTOMER

3.4 Alphabet rule and Default lifecycle rule

The alphabet rule also states that the FSM that defines the behavior of an object
type P must contain all and only the event types for which there is a ‘C’, ‘M’ or ‘E’ in
the column of P in the OET. In addition, the sequence constraints imposed by the
FSM must not violate the default lifecycle of create, modify, end. Hence, according to
these rules, a default FSM can be generated for each object type. This FSM can be
further refined by adding new events and states.

Fig. 9 shows the FSM that can automatically be derived from the OET for
TIME_REGISTRATION. This FSM can be further refined, for example to ensure that a
time registration cannot be modified once it has been invoiced (as in Fig. 10). The
case-tool ensures at any time that a creating event is only used for a transition depart-
ing from the initial state, that a modifying event is only associated to transitions be-
tween intermediate states and that an ending event is only associated with transitions
terminating in a final state.

Table 2. Object-event table for the extended project management example

 CUSTOMER PROJECT EMPLOYEE ASSIGN-
MENT

TIME REGIS-
TRATION

INVOICE INVOICE
 LINE

cr_customer O/C
end_customer O/E
cr_project A/M O/C
end_project A/M O/E
cr_employee O/C
end_employee O/E
assign A/M A/M A/M O/C
remove A/M A/M A/M O/E
register A/M A/M A/M A/M O/C
modify_registration A/M A/M A/M A/M O/M
end_registration A/M A/M A/M A/M O/E
create_invoice A/M O/C
pay_invoice A/M O/M
end_invoice A/M O/E
put_TR_on_invoice A/M, A/M A/M A/M A/M A/M A/M O/C
modify_invoice_line A/M, A/M A/M A/M A/M A/M A/M O/M
end_invoice_line A/M, A/M A/M A/M A/M A/M A/M O/E

exists
register end_registration

modify_registration
put_TR_on_invoice,
modify_invoice_line
end_invoice_line

exists
register end_registration

modify_
registration

invoiced

put_TR_
on_invoice

modify_invoice_line
end_invoice_line

Fig. 9. Default FSM for

TIME_REGISTRATION
Fig. 10. Modified FSM for TIME_REGISIRATION

4. Completeness
Traditionally, modeling is viewed as a mapping of an area or part of the real world

into a model [1][9]. In this view, validity means that all statements made by the
model are correct and relevant to the problem, whereas completeness means that the
model contains all the statements about the domain that are correct and relevant.

When checking the completeness of a model, the user requirements are the refer-
ence point. Hence, user signoff is often considered to be a de facto measurement of
completeness [10]. Unfortunately, users often don't even understand data models, let
alone object-oriented conceptual models. It is therefore impossible to check com-
pleteness of a model by having it checked by users alone. In this respect, the auto-
matic generation of those parts of the specifications that can be inferred from the
already existing specifications will simplify the checking for completeness of the
specifications. What can be inferred is however tightly connected to the semantics of
the techniques for conceptual modeling. As an example, let us reconsider the class
diagram of Fig. 2: it is semantically correct but incomplete as some relevant con-
straints were not identified nor explicitly incorporated into the model. It is certainly
possible to add a note or a stereotype to express the differences between the two asso-
ciations or else to express the difference in the behavioral model. The important point
is however that the diagramming technique does not "enforce" the requirements engi-
neer to think of the difference: it does not help in discovering the incompleteness in
the model. By transforming this graph into an EDG, the incompleteness is resolved,
resulting in a model that is semantically more complete. In the project management
example, the transformation of the class diagram to an EDG leads to the creation of
the object type ASSIGNMENT for the project management example. Subsequently, the
alphabet rule requires the definition of a creating and an ending event type for the
object type ASSIGNMENT, namely assign and remove. These event types allow speci-
fying under what conditions it is allowed to assign and remove an employee to/from a
project. The automatic generation of these two events helps in achieving the com-
pleteness of the model. Nothing in the original UML will point the requirements en-
gineer to consider modeling these events.

In [4][5] the propagation rule is motivated as follows. Since and existence de-
pendent object cannot exist outside the life of its master, anything that happens to the
dependent also affects the master, at least indirectly. By notifying the master of the
occurrence of the events on its dependents, the master class is able to do some
accounting (e.g. in EMPLOYEE counting the number of projects an employee has ever
worked on), or to enforce some constraints (e.g. PROJECT can set as precondition for
the assign event that the state of the project should not be 'closed'). Again, the propa-
gation rule illustrates how the automatic generation of object-event participations
makes the specifications more complete: by propagating event type participations, all
possible places for constraint definitions and information gathering are identified. In
this way, the requirements engineer is invited to consider all these elements for the
inclusion of potential business rules. In the end, when all requirements have been
collected, some of the marked cells might have no constraint or method body associ-
ated with them. Those participations can easily be removed before implementation.
Again, the rules of MERODE improve the self-completing character of requirements.

Finally, the OET provides an automatic mechanism for identifying path joins,
which in turn leads to the identification of relevant constraints in the domain.

5. Discussion

The key factor of the single model principle is the verification of consistency be-
tween the different views of a model. In [3], Paige and Ostroff illustrate how
BON/Eiffel follows the single model-principle and how the Single Model Principle
can be applied to UML/Java by using profiles. In order to achieve a single model
approach, they strongly restrict the types of UML diagrams used: only class diagrams
and collaboration diagrams are included in the deliverables of the approach. Paige
and Ostroff also identify two types of dependencies between the deliverables: an
automatic construction dependency where a tool generates one deliverable from an-
other and guarantees semantic consistency and an algorithmic consistency checking
dependency where an algorithm is used to detect all inconsistencies between two de-
liverables and a report is thereafter generated for the developers.

MERODE also strongly restricts the type of diagrams used in order to meet the
single model principle. In addition the EDG takes an unusual approach to data mod-
eling, but as explained in [4][5], it is exactly existence dependency that is the key to
the semantic consistency checking.

Achieving a single model approach with UML is rather difficult because of the
lack of precise and formal semantics. The need for formal underpinning of UML has
long been recognized and significant advances have been made [11], [12], [13], [14].
Many of these efforts are however limited to the isolated definition of a single model-
ing notation [15], [13], [16], [17]. Advances have been made towards the integration
of different UML views [18]. Examples of such integration efforts are the definition
of state machine inheritance in relation to the generalization/specialization hierarchy
[19], [20], the integration of life-cycle model and interaction model [21] [18] or the
integration of behavior and the notion of composition [16].

In this paper we have illustrated how the MERODE case-tool addresses the consis-
tency checking required to achieve the single model approach. In fact, the MERODE
case-tool uses a mix of automated construction (consistency by construction) and al-
gorithmic consistency checking (consistency by analysis). Indeed, since the require-
ments engineer can further modify the diagrams, the automatic construction must be
complemented by an algorithmic verification for those parts of the diagrams that were
not constructed automatically. As an example, the MERODE case-tool provides an
algorithm for checking FSMs for unreachable states. However, because a large part
of the specifications were generated automatically, the number of remaining inconsis-
tencies that have to be detected by algorithmic verification is much smaller than if the
three views were built in an independent manner. The automatic generation of speci-
fications is also a means to avoid a "big bang" approach to quality, that is to say, an
approach where quality is only checked at the end of the specification process, caus-
ing rework and delay.

An additional benefit of the automatic construction of specification is that it helps
to improve the completeness of the specifications.

Since its creation, the MERMAID case-tool has proved its usefulness in several
real-life projects, the largest of which counts over 44 enterprise objects and 134 busi-
ness events. Since MERODE only covers the domain modeling part of a project, the
tool has been provided with an XMI [22] interface. This allows exporting the specifi-
cations to other case-tools, e.g. those that support all types of UML diagrams.

References

[1] Lindland, O.I., Sindre, Guttom, Sølvberg, Arne, Understanding Quality in Conceptual
Modeling, IEEE Software, March 1994, pp. 42-49

[2] UML, OMG, http://www.omg.org/UML
[3] Richard Paige, Jonathan Ostroff: "The Single Model Principle", in Journal of Object Tech-

nology, vol. 1, no. 5, November-December 2002, pp. 63-81. online available at
http://www.jot.fm/issues/issue_2002_11/column6

[4] Snoeck M., Dedene G., Existence Dependency: The key to semantic integrity between
structural and behavioral aspects of object types. IEEE Transactions on Software Engi-
neering, 24(24), 233-251.

[5] Snoeck M., Dedene G., Verhelst M., Depuydt A.M., Object-oriented Enterprise Modelling
with MERODE. Leuven: Leuven University Press. 1999

[6] Jackson M. Cameron J., System Development, Prentice Hall (1983).
[7] Chen, P.P., The Entity Relationship Approach to logical Database Design, QED informa-

tion sciences, Wellesley (Mass.),1977
[8] Cook, S., Daniels, J.: Designing object systems: object-oriented modelling with Syntropy.

Prentice Hall (1994)
[9] Schuette, R., Rotthowe, T., The Guidelines of Modeling - An Approach to Enhance the

Quality in Information Models, In Tok Wang Ling, Sudha Ram,Mong Li Lee (eds), Con-
ceptual Modeling - ER'98, 17th Interntional Conference on Conceptual Modeling, Singa-
pore, LNCS 1507, Springer.

[10] Moody D.L., Shanks, G.G., Darke, P., Improving the Quality of Entity Relationship Mod-
els - Experience in Research and Practice, In Tok Wang Ling, Sudha Ram,Mong Li Lee
(eds), Conceptual Modeling - ER'98, 17th Interntional Conference on Conceptual Model-
ing, Singapore, LNCS 1507, Springer.

[11] pUML, The precise UML group, http://www.cs.york.ac.uk/puml/
[12] Kuzniarz L., Reggio G., Sourrouille J. L., Huzar Z., Workshop on Consistency Problems

in UML-based software development, Workshop Materials, Research Report 2002:06,
Blekinge Institute of Technology, Ronneby 2002 , Workshop at the UML 2002 Confer-
ence, online at http://www.ipd.bth.se/consistencyUML/

[13] Evans, R. France, K. Lano, B. Rumpe, Developping the UML as a Formal Modelling No-
tation, in UML'98 Beyond the notation; International Workshop Mulhouse France, P-A.
Muller, J; Bézivin (eds.), 1998

[14] Rumpe, A note on Semantics (with an emphasis on UML), in Second ECOOP Workshop
on Precise Behavioural Semantics, H. Kilov, B; Rumpe (eds.), Technische Universität
München, TUM-I9813, 1998

[15] M. Saksena, R. B. France, M. M. Larrondo-Petrie, A characterization of Aggregation, in
Proceedings of the International Conference on Object Oriented Information Systems, 9-
11 September, Paris, 1998

[16] J. Brunet, An enhanced definition of Composition and its use for Abstration, in Proceed-
ings of the International Conference on Object Oriented Information Systems, 9-11 Sep-
tember, Paris, 1998

[17] R.H. Bourdeau, B.H.C. Cheng, A formal semantics for object model diagrams, IEEE
Transactions on Software Engineering, 21 (10), October 1995, pp. 799-821

[18] Bruel J.M., Lilius, J., Moreira A., France R.B, Defining Precise Semantics for UML,
ECOOP 2000 Workshop Reaer, LNCS 1964, Springer 2000, pp.113-122.

[19] M. Snoeck, G. Dedene, Generalisation/Specilisation and Role in object-oriented concep-
tual modelling, Data and Knowledge Engineering, 19(2), 1996

[20] Le Grand, Specialisation of Object Lifecycles, in Proceedings of the International Confer-
ence on Object Oriented Information Systems, 9-11 September, Paris, 1998

[21] K.S. Cheung, K.O. Chow, T.Y. Cheung, Consistency analysis on lifecycle model and in-
teraction model, in Proceedings of the International Conference on Object Oriented Infor-
mation Systems, 9-11 September, Paris, 1998

[22] OMG, XML Metadata Interchange,
http://www.omg.org/technology/documents/formal/xmi.htm

http://www.jot.fm/issues/issue_2002_11/column6
http://www.ipd.bth.se/uml2002/RR-2002-06.pdf
http://www.ipd.bth.se/uml2002/RR-2002-06.pdf

	The single model principle
	2. Overview of the Static, Dynamic and Interaction View
	2.1	The Existence Dependency Graph
	2.2.	The Object-Event Table
	2.3 The finite state machines

	3. Consistency by construction
	3.1 Alphabet Rule
	3.2 Propagation Rule and Type of Involvement Rule
	3.3 Detection of Possible Redundant Paths
	3.4 Alphabet rule and Default lifecycle rule

	4. Completeness
	5. Discussion
	References

